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Motion	Analysis
Motion	analysis of digital	images is based on	a	temporal	sequence of image
frames of a	coherent scene.

"sparse sequence"	 		à few frames,	temporally spaced apart,	
considerable differences between frames

"dense sequence"	 				à many frames,	incremental time	steps,
incremental differences between frames

video à 50	half	frames per	sec,	interleaving,	
line-by-line sampling

Motion	detection
Register	locations in	an	image sequence which have changed due	to motion

Moving object detection and tracking
Detect individual	moving objects,	determine and predict object trajectories,	track
objects with a	moving camera

Derivation	of 3D	object properties
Determine 3D	object shape from multiple	views ("shape from motion")
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Case	Distinctions	for	Motion	Analysis
stationary observer
moving observer
single moving object
multiple	moving objects
rigid	objects
jointed objects
deformable objects
perspective projection
weakly perspective projection
orthographic projection
rotation only
translation only
unrestricted motion
2	image analysis
multiple	 imageanalysis
incremental motion
large-scale motion
B/W	images

colour images
xray images
IR	images
natural images
noisy data
ideal	data
monocular images
stereo images
dense flow
sparse flow
no flow
paralaxis
quantitative	motion
qualitative	motion
small objects
extended objects
polyeder
smooth	objects

arbitrary objects
matte	surfaces
specular surfaces
textured surfaces
arbitrary surfaces
without occlusion
with occlusion
uncalibrated camera
calibrated camera
data-driven
expectation-driven
real-time
no real-time
parallel	computation
sequential computation
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Motion	in	Video	Images
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TV

moving object TV	halfframes

TV-rate	samplingaffects images of movingobjects:
- contours show saw-tooth pattern
- deformed angles
- limited	resolution
Example: - 512	pixels per	row

- length of dark car is ca.	3.5	m	à 130	pixel
- speed is ca.	50	km/h	à 14	m/s
- displacement between halfframes is ca.	10	pixel
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Difference	Images
An	obvious technique formotion detection is based on	difference images:
• take the pixelwise difference of images of a	sequence
• threshold the magnitude of the differences
• regions above threshold may be due	to motion

Examples:

Note effects which prohibit reliable motion detection:
• phase jitter between frames (pixels do not correspond exactly)
• spurious motion of branches, pedestrians, dogs, etc.
• motion of uniform brightness regions does not show
• temporal changes of illumination cause non-motion differences
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frame1 frame12 frame2	- frame1
threshold 30	

frame12	- frame1
threshold 30	

frame34	- frame1
threshold 30	

frame34	- frame1
without threshold
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Counting	Differences
If the goal is to isolate the images of moving objects,	it may be useful to
• count how often a	pixel differs from its initial value

(first-order	difference picture FODP)
• count how often a		pixel of a	FODP	region differs from its previous value

(second-order	difference picture SODP)
(R.	Jain	76)
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frame1 frame4	- frame1
FODP	(yellow)
SODP	(red)

frame10	- frame1
FODP	(yellow)
SODP	(red)

frame30	- frame1
FODP	(yellow)
SODP	(red)

Note:	The	problem of uniform	brightness regions is not	really overcome.	
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Motion	Derivation	Algorithms

Some of the most commonly used motiondetection approachs:
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Feature	based approaches

Monotony operator Canny Detector

Fast	Cross-
correlation

Shape-
Context

Maximum	
Likelihood Smoothness

of Assignment (Variance)	-
Minimizing

Fast	Normalized
Cross-correlation

Differential	approaches

Hybrid	approaches

Combined	Local	
Global

Combined	Local	Global	
(non-linear)

Local approaches

Lucas	and Kanade
StructureTensor
Constant	Contrast

Farnebäck

Global	approaches

Horn	and Schunck

Nagel	u.	
Enkelmann
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Feature	Based Approaches

The	intuitive	way to derive motion from an	image sequence:

1. Detect features on	each (subsequent)	imageof the sequence.

2. Determine (statistical)	correspondencebetween the features.

3. Based on	(2)	and other constraints,	performan	assignmentof the
detected features.

4. Collect all	displacements and combine them to describe the
motion inside the sequence.

For these approaches,	the derivation of motion
equals the Solution	of the CorrespondenceProblem
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The	Correspondence Problem

Difficulties:

• The	scene may not	offer enough structure to uniquely locate points.

• The	scene may offer too much structure to uniquely locate points-

• Geometric featuresmay differ strongly between frames.

• Photometric features differ strongly between frames.

• Theremay be no correspondingpoint due	to occlusion.

Note	that these difficulties apply to single-camera motion analysis as
well as multiple-camera 3D	analysis (e.g.	binocular stereo).
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The	correspondence problem is to determine which interest points in	
different	frames of a	sequence mark the same	physical part of a	scene.
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Corresponding	Interest	Points
Detection of moving objects by

1. finding "interest points"	 in	all	frames of a	sequence
2. determining the correspondence of interest points in	different	frames
3. chaining correspondences over time
4. grouping interest points into object candidates

Example:	Tracking	interest points of a	taxi turning off	Schlüterstraße	
(Dreschler and Nagel	82)	
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Moravec	Interest	Operator
Interest	points (feature points)	are image locations where an	interest operator
computes a	high	value.	Interest	operatorsmeasure properties of a	local pixel
neighbourhood.

This	simple	operator measures the dissimilarity of a	point w.r.t.	its surrounding.

Refinement of Moravec operator:	
Determine locations with strong	
brightness variations along two
orthogonal	directions (e.g.	based
on	variances in	horizontal,	
vertical and diagonal	direction).

Interest	points in	different	framesmay not	correspond to identical physical object
parts due	to their small neighbourhood and noise.
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Moravec interest operator: ijM (i, j) = 1
8

| g(m,n)− g(i, j) |
n= j−1

j+1

∑
m=i−1

i+1

∑
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Corner	Models
Interest	pointsmaybebased on	
models of interesting facets of the
image function,	e.g.	corners.

"corner"	=	locationwith extremal
Gaussian curvatures
(Dreschler andNagel	81)

Zuniga-Haralick operator:
• fit	a	cubic polynomial

f(i,j) = c1 + c2x + c3y + c4x2 + c5xy + c6y2 + c7x3 + c8x2y + c9xy2 + c10y3

For a	5x5	neighbourhood the coefficients of the best-fitting	polynomial can be directly
determined from the 25	greyvalues

• compute interest value from polynomial coefficients
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ZH (i, j) = −2(c2
2c6 − c2c3c5 − c3

2c4 )

c2
2 + c3

2( )
3
2

measure of "cornerness"	of the polynomial
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Correspondence	by	Iterative	Relaxation
Basic	scheme (Thompson	and Barnard	81)	modified by Dreschler and Nagel:
• initialize correspondence confidences between all	pairs of interest points in	2	

frames based on
– similarity of greyvalue neighbourhoods
– plausibility of distance (velocity)

• modify confidences iteratively based on	
– similarity of displacement vectors in	the neighbourhood
– confidence of competing displacement vectors
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initialized confidences confidences after	10	iterationsinterest points of 2	frames
(red and blue)
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Kalman	Filters	I
A	Kalman	filter provides an	iterative	scheme for (i)	predictingan	event and
(ii)	incorporatingnewmeasurements.

Assumea	linear systemwith observations depending linearlyon	the system
state,	andwhiteGaussian noise disturbing the systemevolutionand the
observations:
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prediction measurement

quantity of interest ("state")	at time	k
model for evolution of xk
zero meanGaussian noise with
covariance Qk

observations at time	k
relation of observations to state
zero meanGaussian noise with
covariance Rk

Often,	Ak,	Qk,	Hk and Rk are constant.

!xk+1 = Ak
!xk +
!wk

!zk = Hk
!xk +
!vk

!xk
Ak
!wk
!zk
Hk
!vk

What is the best estimateof
based on	the previous estimate

and the observation ?

!xk
!xk−1

!zk
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Kalman	Filters	II
The	best a	priori	estimate of before observing is:

After	observing ,	the a	priori	estimate is updated by

Kk is Kalman	gain matrix.	Kk is determined to minimize the a	posteriori	 variance Pk‘‘ of
the error .	The	minimizing Kk is

with and:

Pk´ is covariance of error before observation of .

Iterative	order of computations:
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Kalman	Filter	Example
Track	positions pk and velocities vk of an	object moving along a	straight line.	
Assume unknown accelerations ak with probability density N(0, q2) and measurements of
positions pk corrupted by white noise bk with probability density N(0, r2).

Initialization (here:	position and velocity values are known with certainty)

First	iteration
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Diagrams for Kalman	Filter	Example I
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Diagrams for Kalman	Filter	Example II
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Kalman Filter	Demo

https://www.youtube.com/watch?v=sG-h5ONsj9s
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Differential	Approaches
Idea:
Instead of searching and tracking features,	derive the change within the
sequence by means of differential	(flow)	fields.

We destinguish between:
• local approaches,

which derive the flow field only using local sequence information
• global	approaches,

which use global	contraints to derive the flow field
• hybrid	approaches,

which combine the former two approaches

The	correspondence problem does not	need to be solved.	But	the
dependency between flow field andmotion has to be questioned!

Most	approachesarebased on	the Optical	Flow	ConstraintEquation!
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Optical	Flow	Constraint	Equation

Assumptions:
• Observed brightness is constant over time (no illumination changes)

• Nearby image points move similarly (velocity smoothness constraint)

For a	continuous image g(x, y, t) a	linear	Taylor	series approximation gives
with:

For motion without illumination change we have

Hence
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Optical	flow is the displacement field of surface elements of a	scene during an	
incremental time	interval dt ("velocity field").

gx ≈ Δg/Δx,  gy ≈ Δg/Δy,  gt ≈ Δg/Δt maybe estimated from the spatial and temporal	
surround of a	location (x, y),	hence the optical flow constraint equation provides one
equation for the two unknowns u and v.	

g(x + dx,  y+ dy,  t + dt) ≈  g(x,  y,  t) +  gxdx  +  gydy +  gtdt  =  0 ∇Tg =  gx  gy  gt( )

g(x + dx,  y+ dy,  t + dt) =  g(x,  y,  t)

dx
dt
gx +

dy
dt
gy = gxu+ gyv = −gt Optical	Flow	Constraint Equation (OFCE)

with:	u,	v	velocity components
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Aperture	Effect
The	optical flowconstraint allows for ambiguousmotion interpretations.	This	
can be illustrated by the aperture effect.

Comparewith the barber pole	effect:	
https://www.youtube.com/watch?v=EkmdGcPnRXQ
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In	which direction has the edge
moved?

Due	to the linear	approximation of the image function,	
the velocity vector cannot be determined uniquely
from a	local neighbourhood.
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Local Smoothness Constraint
One method to solve the Aperture Problem:	
Assume a	locally equal flow àLucas	and Kanade approach

Instead of one equation for two unknowns we now get card(D) equations!	Hence the
linear	system of equations becomes overdetermined.
Solution	 via	minimization of the squared error (MSE):

The	above LSE	can be computed efficiently by implementing the analytical solving
procedure explicitly.
Note:	More	sophisticatedmethods apply local smoothness instead of local equality
constraintsà Structure Tensor	approach
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Global	Smoothness Constraint
For dynamic scenes one can often assume that the velocity field changes smoothly in	
a	spatial neighbourhood à Horn	and Schunck approach:

– large	objects
– translational motion
– observer motion,	distant objects

Hence,	as an	additional	 constraint,	one canminimize a	smoothness error:

𝑒" = ∬ 𝑢&' + 𝑢)' + 𝑣&' + 𝑣)' 𝑑𝑥	𝑑𝑦 with 𝑢& =
/0
/&
	𝑒𝑡𝑐.

One also	wants to minimize the error in	the optical flow constraint equation:	

𝑒4 = ∬ 𝑔&𝑢 + 𝑔)𝑣 + 𝑔6
'
𝑑𝑥	𝑑𝑦

Using a	Lagrange	multiplier 𝜆,	both constraints canbe combined into an	error
functional,	 to be minimized by the calculus of variations:		

𝑒 = 𝑒4 + 𝜆𝑒" = ∬ 𝑔&𝑢 + 𝑔)𝑣 + 𝑔6
'
+ 𝜆 𝑢&' + 𝑢)' + 𝑣&' + 𝑣)' 	𝑑𝑥	𝑑𝑦	
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Optical	Flow	Algorithm
The	solution for optical flow with smoothness constraint is given in	terms of a	pair	of partial	
differential	equations:	

2𝑔& 𝑔&𝑢 + 𝑔)𝑣 + 𝑔6 − 2𝜆𝑢&&− 2𝜆𝑢)) = 0

2𝑔) 𝑔&𝑢 + 𝑔)𝑣 + 𝑔6 − 2𝜆𝑣&& − 2𝜆𝑣)) = 0
The	equations can be solved by a	Gauss-Seidel	iteration based on	pairs of consecutive images
(Horn	&	Schunck 81).	At	each iteration n+1 we get:

𝑢;<= = 𝑢>; − 𝑔&
?@0AB<?CD>B<?E

F<?@G<?CG

𝑣;<= = 𝑣̅ ; − 𝑔)
?@0AB<?CD>B<?E

F<?@G<?CG
with 𝑢>,	𝑣̅ mean velocities of the local neighborhood

Note:
– The	partial	derivatives	are usually pre-computed for the image series.
– Initialization vectors may be non-zero.
– The	iterations may be restricted by count or by threshold (Sonka):
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ek = gx (i, j)u
k (i, j)+ gy (i, j)v

k (i, j)+ gt (i,j)( )
2
+

i
∑

i
∑ λ ukx (i, j)( )

2
+ uky (i, j)( )

2
+ vkx (i, j)( )

2
+ vky (i, j)( )

2( ) < ε
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Optical	Flow	Improvements
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Several improvements of the Horn	&	Schunck optical flow computation have been
suggested.	For example,	Nagel	(1983)	 introduced the "oriented smoothness constraint"	
which does not	enforce smoothness across edges.		

(fromNagel	and Enkelmann	86)

2	frames of the taxi sequence

frame	11

frame	12

needle diagram of optical flow
for taxi motion with isotropic
smoothness constraint after	
30	iterations

the	same	with	oriented	
smoothness	 constraint		
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Small	Spatio-temporal	Distances
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Larger	Spatio-temporal	Distances

28

IP1	– Lecture 17:	Motion	Analysis	1

07.01.16 University of Hamburg, Dept. Informatics



Largest Spatio-temporal	Distances
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• For large	spatio-temporal	distances,	
the flowmaynot	correspond to themotion.

• Typical solution approach:
– use Image	(resolution)	pyramid to decompose motion at different	scales
– warp	partial	results and integrate the parts at the end.

• Observation:
– Pyramidsmay not	be applicable for non-linear	motion decompostion
– Inter-level	warping may introduce new errors
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Optical	Flow	Oberservations
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• To overcome the drawbacks,	we propose the following solution:
– Decompose motion into a	(large)	global	and a	(small)	local motion part
– Find	a	model for the local motion and apply e.g.	automated registrationmethods to

correct it.
– Use the commonly known Optical	Flow	approaches to derive the local part of the motion
– Combine	both results for the final	motion vectors

• Benefits:	
– Local/Global	motion parts may provide a	deeper insight into the processing underneath

the motion.
– Generic base instead of a	new (over-)specialized algorithm
– Approach	is also	applicable to enhance feature-based methods!
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Optical	Flow	Improvements
(from Seppke	2013)
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Flow	Decomposition – Overall	Flow
Deriving sea surface current fields from satellite images

32
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IRS-1C	WiFS	(Near Infrared)

10	km
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Flow	Decomposition – Local Flow	Component

Deriving sea surface current fields from satellite images
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IRS-1C	WiFS	(Near Infrared)

10	km
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